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Abstract 
The paper contributes to the conceptualization of how knowledge grows in the economy by 
analysing the evolution of mechanisms for economizing cognition in software development 
processes. These mechanisms are called abstraction mechanisms and they determine what 
representations, called abstractions, developers can create and use when writing software 

code.  The development of these mechanisms has been an ongoing concern within the 
software community. We find that over time complementary advances in theoretical 

knowledge, instrumentation, and computational capacity have led to an expansion of the types 
of abstraction mechanisms in use. As a consequence software is being composed of a large 
interrelated network structure of abstractions which have been created by a large number of 
developers. As the network structure expands and becomes more compact (fine-grained) the 
ratio between developers’ knowledge and the total knowledge they are able to draw upon in 
their development work becomes lower. They are thus able to do more by knowing less. We 
suggest that the findings have a general significance for understanding knowledge growth in 
the economy by furthering our understanding of modularity and the division of innovative 

labour. 
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1. Introduction 

[A]ll action is decided in the space of representations…. To explain human actions, both 
successful and unsuccessful, we often need to understand the representations on which they are 
based.  

(Loasby 1999, p. 10) 

This paper aims to contribute to the conceptualization of how knowledge grows in the 

economy by addressing the evolution of mechanisms for economizing cognition in 

development processes. The importance of the growth of knowledge for economic growth and 

development has been widely recognized by economists. Even if the growth of knowledge has 

been considered outside of the scope of mainstream economic analysis, there is a long 

tradition, and recent resurgence, of considering knowledge growth as a key driver of 

economic growth (Smith 1776, Menger 1871, Arrow 1962, Pavitt 1998). Metcalfe (2002) 

stresses that development processes by economic agents are deeply connected to the growth 

of knowledge as they create the capacity to transform the economic system from within, 

maintaining a potential for ever present change.  

 

There are at least two perspectives on the growth of knowledge in the economy. First, 

knowledge is in some manner being improved, in the sense that problem-solving is becoming 

increasingly powerful in reaching desired end results given specified starting conditions 

(Arora and Gambardella 1994). This perspective stresses how humans improve their 

knowledge of the world and how this improved knowledge increases the ability of humans, 

firms and other actors to reach desired outcomes.  

 

The second is the topic of this paper that deals with how the total knowledge in the economy 

grows through differentiation. Through the division of knowledge humans are able to increase 

total knowledge in the economy above the cognitive limitations of each individual (Pavitt 

1998, Loasby 2000). This type of knowledge growth requires coordination in the terms of 

mechanisms which allow each individual to take advantage of differentiated knowledge of 

others without sharing that knowledge completely. This perspective focuses on the 

economising of human cognition. The two perspectives differ in that the former stresses that 

knowledge is becoming ‘better’ while the latter stresses that knowledge grows in the sense 

that the reorganization of knowledge allows humans to ignore much knowledge (Loasby 

(2000, 2001).  
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The two perspectives do not exclude each other as the growth of knowledge in the economy 

can and do contain both aspects simultaneously.  Thus, the two perspectives are 

complementary in the sense that improved knowledge may influence the structure of 

knowledge differentiation (Menger 1871), and knowledge differentiation is conducive to 

knowledge improvement (Smith 1776). 

 

There are a number of mechanisms that enable economic agents to economize on cognition. 

Institutions, interpreted as “rules of the game” (North 1990, 1993), can be understood as a 

broad set of such mechanisms (Nelson and Sampat 2001). Perhaps the best known example is 

the market price system. According to Hayek (1945/1948, p. 86-87) “[w]e must look at the 

price system as such a mechanism for communicating information...The most significant fact 

about this system is the economy of knowledge with which it operates, or how little the 

individual participants need to know in order to be able to take the right action.” This means 

that market actors can discover and develop profitable opportunities without a complete 

understanding of their sources (Moran and Ghoshal 1999).  

 

There are mechanisms for economizing cognition that specifically address the needs of 

developers. One example is technical standards which provide technical specifications, e.g. 

communication protocols, which developers may adhere to in their work. If many developers 

follow the same standard, labour is coordinated to some extent, which means that different 

developers do not need to spend much time or effort thinking about alternative designs or 

approaches, nor do they have to second guess or adapt to rapidly changing interfaces provided 

by others. 

 

A related example is the use of modular product architecture, specifying explicit interfaces 

between modules which define the expected functionality of that module in relation to the 

architecture (Ulrich 1995). As discussed in the modularity literature, such interfaces reduce 

the knowledge sharing between developers of different modules necessary for implementing 

the overall functionality of the product and makes standardization possible (Sanchez and 

Mahoney 1996, Ulrich 1995). 

 

Regardless of which mechanisms are used for economizing on cognition, they are not natural 

givens. They are based on representations, which have to be invented and developed (Hayek 
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1945/1948, Loasby forthcoming). For example, the price system is based on the number 

system representation which in itself is a mechanism for economizing on cognition (Harper 

forthcoming). Furthermore, modularity is based on representations and the literature and 

practice of modularity draws heavily on specific mechanisms that build representations even 

if these issues rarely are discussed in such a manner (e.g. Ulrich 1995).  

 

The selected and used representations determine what is attainable in terms of differentiation 

and integration of knowledge in the same sense as representation determines the complexity 

of a structure (Simon 1996, p. 216). This means that the way representations are created 

influence the representations’ usefulness for economizing on cognition and in terms of the 

opportunities they provide for knowledge improvements. Thus the means for creating 

representations have a fundamental influence on how knowledge can be differentiated and 

integrated and ultimately on the growth of knowledge.    

 

Theories of representation are currently underdeveloped, but theories of computer 

architectures and programming languages illustrate some of the directions they may take 

(Simon 1996, p. 133). In particular, programming languages are an example of mechanisms 

for creating and developing representations called abstractions in software. These languages 

belong to a larger class of mechanisms, termed abstraction mechanisms, which are integral to 

the technology of software creation (e.g. Guarino 1979, Shaw 1984). New abstraction 

mechanisms are constantly being created within the software creation community with the 

aim to aid developers in decomposing software designs in a way that promotes an effective 

division of developer work and improves software reuse among developers (e.g. Barnes and 

Bollinger 1991, Tidd et al 1992, Gamma et al 1995, Mili et al 1995, Fichman and Kemerer 

1997). The primary motive of the abstractions and the abstraction mechanism is therefore for 

developers to economize on cognition within development work. 

 

The purpose of this paper is to analyse the evolution of abstraction mechanisms in software 

creation and how this evolution has influenced the abstractions being created and used by 

individual software developers when they create new software. By having this focus we 

provide an example of the evolution of mechanisms for economizing on cognition in 

development work and provide a conceptualization which we believe is helpful for general 

understanding of knowledge growth and the division of innovative labour. 
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The paper is structured as follows. The next section characterises and contrasts two 

definitions of abstraction. It also characterizes abstraction mechanisms as technologies of 

technical development and following that analyses the literature on changes in these 

technologies. Section 3 analyses how abstractions and the mechanisms for creating them have 

changed, as well as analysing changes in the technology of software creation. Section 4 four 

discusses the findings and draws some conclusions. The paper finishes by a discussing 

implications for further research.  
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2. Abstractions and the evolution of abstraction mechanisms  

There are two common definitions of abstractions (Fellbaum, 1998). The first views 

abstraction as representation of phenomena in terms of a limited number of elements while 

leaving out or ignoring others, or the act of creating these representations. A simple example 

of such abstraction is the representation of an employee by his or her title. Such titles provide 

information about the activities that a person is expected to perform without giving any details 

about that person, e.g. name, gender, age, and education, or what means are used to perform 

the activities. The abstraction here consists of the removal of details, which means that 

sometimes – but not always - the same title can be used for different persons using different 

means to perform the activities.  

 

The second definition views abstraction as a general concept formed by extracting common 

features from specific instances, or the process of forming such concepts. Using a similar 

example as before the concept of the white-collar worker provides a generalization for 

workers performing activities which do not require manual labour and who are expected to 

dress with a degree of formality.  

 

Whilst sounding remarkably similar there are distinct differences between these two 

definitions. The former focuses on the withdrawal or removing of details. What details are 

withdrawn or removed are dependent on for what purpose the abstraction is created. The 

latter, on the other hand, focuses on creating representations which hold true for a group of 

instances sharing common characteristics. This provides opportunity to generalize statements 

about phenomena which share common characteristics. 

 

Despite these differences these two definitions are also related. The former view of 

abstractions is the superset of the latter as suppression of details sometimes is based on the 

(successful) identification of common elements among different instances. Increasing 

generality requires the identification of common elements, and the subsequent suppression of 

details, which serves the purpose of generalization from specific instances. Increasing 

generality is thus one of the purposes which may guide how phenomena is represented in 

terms of a limited number of elements and what details are left out or ignored. In other words, 

withdrawal or removing of details is therefore a more fundamental aspect of abstractions as 

compared to increased generality. In fact, abstractions that are created with the objective to be 

general, may in use only turn out to suppress details. In this manner, attempts to generalize 
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may turn out to be ‘mere’ suppressions of detail. Thus when some domain boundary is passed, 

the generality of abstractions breaks down into suppression of detail.  

 

Representations have an important role in problem solving (Newell 1969, Simon 1996). Every 

problem-solving efforts starts with the creation of a representation for the problem which is 

suitable for the problem solving method used to provide a solution. This amounts to creating 

an abstraction, i.e. represent the problem in terms of a limited number of elements, which 

provides a suitable input for the problem-solving method being used to find a solution.  

 

For most of our daily-life problems we are able to retrieve from memory a representation 

which we have used on previous occasions, adapt it to the situation at hand and apply a 

known procedure which may include the use of an artefact (Simon 1996). In development 

work the situation is often different. Development work is concerned with the creation of an 

artefact or a procedure which can be repeatedly used to solve a particular problem. This 

artefact or a procedure may be either isolated or belong to a larger system, and the sources of 

the problems being solved may be related to the “contextual needs of society” (Vincenti 1990, 

p. 203) or the characteristics of the technologies being used (Laudan 1984, Vincenti 1990, pp. 

200-207). When developers create new artefacts or procedures they are often faced with 

problems which they do not know how to solve. They may therefore need to invent and 

develop new representations which allow them to solve problems using known problem-

solving methods, extend or renew the problem-solving methods in order to reach a feasible 

solution using a known representation of the problem, or to create both new representations 

and new problem-solving methods. 

 

The abstractions that can be used by developers depend upon the abstraction mechanisms 

available to them. Abstraction mechanisms are procedures which enable the developer to 

specify, implement and use a certain type of abstraction. An example of abstraction 

mechanisms can be found in Ulrich’s (1995) discussion of modular product architectures. 

Different types of product architectures are different representations of how products are 

constructed. For example, when developers create a product that is based on a bus architecture 

they make use of design procedures for arranging the functional elements and mapping them 

to physical components in a bus like structure. The implementation, and even the validation, 

of these design procedures may be partly or wholly automated through the use of Computer 

Aided Design (CAD) tools. These design procedures which help developers specify, 
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implement and use the representations on which the products are constructed, are abstraction 

mechanisms.  

 

Naming is another example of an abstraction mechanism which bears resemblance to the 

example of employee title mentioned before. Naming is one of the most basic abstractions in 

software creation and allows the programmer to abstract away from addresses in memory 

(Guarino 1978). Through its use programmers can use descriptive names when referring to 

memory locations where certain instructions or data is kept. This solves the problem of 

bookkeeping when instructions or data need to be moved around in the hardware memory. 

The problem-solving method consists in using a table that links names to memory addresses. 

Programming languages supporting naming provide mechanisms that automatically create the 

table, update it when needed, and translate names to memory addresses. Without these 

mechanisms it would very cumbersome, or even impossible, to use naming abstractions when 

creating software. 

 

Abstraction mechanisms can thus be considered a specific class of problem-solving methods 

which aim at solving problems related to the specification, implementation and use of 

abstractions. As these problems are at the heart of development work abstraction mechanisms 

are a part of the technology of development work. When development work is of technical 

nature this technology has been termed the ‘technology of technical change’ (Arora and 

Gambardella 1996, Dosi 1988). 

 

But how do abstraction mechanisms evolve? We have already noted that within the software 

creation community there has been an ongoing search for new abstraction mechanisms which 

could promote a more effective division of developer work and improve software reuse. Thus, 

at least in this case, it seems that there always exist problems which developers have difficulty 

solving given existing abstraction mechanisms. A limiting factor is therefore the ability to 

invent and implement new abstraction mechanisms to deal with these problems.  

 

We will address these limits and how they influence the evolution of abstraction mechanisms 

in two ways. First, we analytically investigate the nature of problem-solving methods based 

on Newell (1969). Second, we review the literature on the changing technology of technical 

change which is mostly empirical in character. Fortunately, these two approaches provide a 
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converging picture which we can use to analyse the evolution of abstraction mechanisms in 

software creation. 

 

Newell (1969) argues that problem-solving methods are characterized by their generality and 

power. The generality of a method is determined by the scope of different problems the 

method can solve. A method which can solve a larger set of problems is more general than a 

method which can solve a more narrow set of problems. The power of a method is on the 

other hand determined by the method’s ability to deliver solutions at all, the quality of the 

solutions, and the amount of resources required. First, it may or may not be possible to obtain 

a solution to every problem in the problem domain and methods may even differ in the degree 

it is possible to know what problems they are capable of solving. Second, problem solving 

methods may differ in terms of the precision of their solutions or how close they are to 

optimal solutions. Solutions which are precise and optimal are more useful than others and are 

therefore of higher quality. Third, problem solving methods may require varying amount of 

resources in order to reach a solution at all or a solution of acceptable quality.  

 

Newell (1969) also argues that there is an inverse relationship between the generality of a 

method and its power. This equals saying that for each degree of generality there is an upper 

bound on the power of a problem solving method and this upper bound decreases with 

increased generality. 

 

The generality of a problem solving method refers to the range of problems it can be used to 

solve. In our case, abstraction mechanisms which enable the creation of more general 

abstractions will have lower upper limits on power compared to abstraction mechanisms 

which enable the creation of less general abstractions.  

 

The upper limits on power can be viewed as a theoretical limit on the power of an abstraction 

mechanism. The actual power is dependent on how well the implementation of the 

mechanism measures with regards to Newell’s (1969) three dimensions: the probability of a 

solution, the quality of the solution, and the amount of resources needed to reach a solution. 

New and ‘better’ abstraction mechanism should therefore be more powerful at the level of 

generality at which they operate. 
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But what factors will improve the probability of solution, the quality of solution, and the 

amount of resources needed to reach a solution? As this is not explicitly discussed by Newell 

(1969) we now turn to studies on the technology of technical change as these provide a means 

to analyse changes in problem-solving methods.  

  

Arora and Gambardella (1994) provide some evidence which suggests that changes in the 

technology of technical change are due to complementary advances in three areas: theoretical 

understanding of problems, instrumentation and computational capacity. Notably, these three 

areas have been much discussed in the literature (Moore 1965, Rosenberg 1976, Nelson 1992, 

Nightingale 1998) but as far as the present authors have found, there is far less material 

available that help us understand how the complementarity of the three areas work out or how 

they link to Newell’s two dimensions. Fortunately, this can be overcome to some extent by 

referring to studies of the development of science and technology.  

 

The argument for improved theoretical understanding of problems is related to the claim that 

there is an increased scientification of technological change and thus that advances in 

scientific disciplines have an important influence on technological change (Meyer-Krahmer 

and Schmoch 1998). The emphasis here is that through the use of science there are improved 

attempts to capture and understand the principles that govern physical phenomena. In 

particular, analysis of patent citations shows that inventors increasingly refer to scientific 

advances in their patent applications (Narin and Noma 1985, Narin and Olivastro 1992). 

 

While admitting the relevance of the increased scientification of technological change other 

scholars stress that new technological advancements are prime engines of scientific progress 

(Gazis 1979, de Solla-Price 1984, Meyer 2000, Rosenberg 1992, compare Smith 1795). 

Importantly, de Solla Price (1984) argues that advances in instrumentation and experimental 

techniques have driven and stimulated theoretical advances in fundamental science and 

innovations. Thus, the argument is that advances in physical artefacts or tools such as 

instruments may generate new opportunities for knowledge creation, regardless of whether 

these consist of  ‘technological knowledge’ or ‘scientific knowledge’.  Thus, instruments can 

be understood as the capital goods of R&D, meaning that their economic significance comes 

from allowing researchers or engineers to reduce the costs of solving increasingly complex 

technical problems (Rosenberg 1976, Nightingale 2000). While many studies used to reside in 

some formulation of the ‘linear model of innovation’ where scientific advances precede 
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technological advance leading to innovation (see Mowery and Rosenberg 1979, Kline and 

Rosenberg 1986, Rosenberg 1992), more recent studies broadly conclude that scientific and 

technological advances need to be understood as being mutually dependent (Meyer-Krahmer 

and Schmoch 1998, Meyer 2000).  

 

An important aspect for the development of instrumentation is improvements in 

computational capacity (Bell and Gray 2002, Bader 2004). These improvements primarily 

refer to the dramatic advancement in the ‘number crunching’ abilities of information 

technologies. One illustration of this is the so called Moore’s law, which states that the 

number of components per integrated circuit will double in 12-18 months leading to dramatic 

decrease in cost per component and intra-circuit speeds (Moore 1965). Moore based his 

prediction on empirical observation in the early sixties but this development has been 

remarkably stable over time.  

 

An illustration of the complementarity between advances in theoretical knowledge, 

instrumentation and computational capacity is the area of product development of gadgets 

based upon electromagnetic waves in the microwave range. Over time problem-solving has 

shifted from simplified and highly specific but powerful approaches to increasingly general 

algorithms, such as Finite Element Methods (FEM) that solve problems that defy closed-form 

analytical solutions. Many of these changes involves the solving of engineering problems by 

directly applying the fundamental theorem (Maxwell’s equations) to develop radar or 

microwave ovens (Oliner 1984). Such problem-solving procedures would have been 

impossible just a couple of decades ago because of the complexity of the mathematics given 

the tremendous demand on computational capacity. However, the shift towards much more 

general but powerless approaches cannot just be understood from the perspective of advances 

in computational capacity as the very algorithms themselves have been radically improved. 

One example includes the reformulation of problems so that the problem becomes computer 

solvable. Another example is the importance of scientifically proven error estimations of how 

well a computed solution fits the ‘real’ solution. This allosw engineers to construct gadgets 

with controlled behaviour before having tested actual physical products. Hence, the 

exponential growth in computational capacity together with the advances in theoretical 

knowledge and instrumentation that have made it economically (if not technologically) 

possible to apply more fundamental and general approaches as the basis for industrial 

research.  
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The complementarity between advances in theoretical knowledge, instrumentation and 

computational capacity are closely related to improvements in the probability of solution, the 

quality of solution, and the amount of resources needed to reach a solution. Advances in 

theoretical knowledge improve the understanding of what solutions are possible and how to 

reach them given certain assumptions. Instrumentation will determine the quality of the 

solution, especially to what degree the implementation is automatic and reliable. Finally, 

computational capacity will greatly influence the amount of resources required to reach a 

solution. 

 

3. Evolution of abstraction mechanisms for software creation 
 

This section analyses changes in the nature of software creation during the last five decades 

and investigates how the complementary advances in theoretical understanding of problems, 

instrumentation, and computational capacity have influenced the evolution of abstraction 

mechanisms in SWC and how this evolution has effected the abstractions available to 

software developers. The major changes are the co-evolution of increased software 

complexity and the increased emphasis and ability of developers to create and use multi-level 

abstractions from the level of the computer to the level of users problem.  

3.1 Use of abstraction in software creation 
Software creation consists of activities with the objective to create programming code to run 

on a computer system. These activities include the capturing of application and customer 

requirements, system design, programming, testing and software maintenance (Prieto-Dìaz 

1990, Bellinzona et al. 1994, Glass and Vessey 1998, Weyuker 1998). The computer systems 

may range from single microprocessors to parallel computers and large systems of 

interconnected personal computers or mainframes. Accordingly, the topics and knowledge 

involved in software creation consists of a range of factors, where the relative importance of 

these factors varies greatly according to the application and the targeted computer system 

(Basili and Musa 1991, Glass and Vessey 1998). 

 

The importance of abstractions was discussed by programmers in the 1950s (Jones 2003). 

This could be expected given that abstractions and models do play a crucial role in all types of 

engineering. At that time, software played a supplementary role to hardware and software 

creation was thus viewed as a subfield of existing engineering disciplines. Despite this early 
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recognition, seminal scientific papers of characterising and using abstractions in software 

were not published until around 1970, especially Dijkstra (1968) and Parnas (1972, 1975).  

 

These and other papers were crucial not just for the explicit identification of abstraction as a 

fundamental principle of software creation, but also for the rise of modular programming as 

well as software modularity, which is based on abstraction (Parnas 1972, Brooks 1995). 

Importantly, in his 1972 ACM Turing lecture Edward Dijkstra argues that “We all know that 

the only mental tool by means of which a very finite piece of reasoning can cover a myriad 

cases is called "abstraction"; as a result the effective exploitation of his powers of abstraction 

must be regarded as one of the most vital activities of a competent programmer” (Dijkstra 

1972, p. 864).1  

 

Another issue is that at the time there was little explicit recognition that the very notion 

abstraction could mean at least two different things.  This is reflected in the extensive 

conceptual and semantic confusion in scientific journals and textbooks (e.g. IEEE 1983, 

Zimmer 1985, Booch 1993). More specifically, one view of abstraction in software was that 

abstractions could be created as finite pieces of reasoning by keeping essential details but 

suppressing irrelevant details from the perspective of some purpose. An argument was made 

that such formulations could be made more powerful and general, ultimately allowing a 

programmer full control of the software in line with the role of abstraction in other 

engineering disciplines. However, in practice this implies an emphasis on power of the 

problem-solving methods at the expense of generality. Indeed, problems that computer 

scientists can successfully solve by a rigorous approach are often dismissed as ‘toy problems’ 

by industrialists who argue that these lack industrial significance (Shapiro 1997).  

 

A more pragmatic approach was outlined by Parnas (1972) who argued that abstraction 

should be viewed as information hiding, where ‘clean interfaces’ among chunks of code 

allowed for a division of knowledge in software creation. This view emphasises generality of 

the approach at the expanse of power of problem-solving methods.  

 

                                                 
1 At the time, the importance of abstractions were not undisputed. Many industrialists and researchers thought 
that software developers must have full knowledge and understanding of the entire programming code (Mills 
1971, Brooks 1995). However, twenty years later such views are outdated (Brooks 1995, pp. 271-272).  
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So what this tell us about the nature of abstraction in software? In software creation 

abstractions permit the representation of phenomena in terms of a limited number of elements 

while irrelevant details are left out or ignored. What details are included and what are left out 

depends on the properties or attributes judged to be important for a given purpose (Smith and 

Smith 1977, Guarino 1978, OMG 2001). The purposes may vary greatly and may influence 

the nature of the abstractions being created. Some, such as academics dealing with formal 

verification or fault tolerance, tend to have quite a strict and mathematically based view of 

abstractions. This is in line with the formulations along Dijkstra. While such attempts have a 

long history in computer science and are successfully used in some areas, these approaches 

have failed to diffuse widely. Others, notably practitioners working in commercial 

environments may view abstractions more in the way of suppression of details or information 

hiding (for example Parnas 1972). The latter is a more inclusive characterisation that is widely 

disseminated among software developers. This characterisation covers all aspects of software 

creation and is thus a better conceptualization of what abstractions are and how they are used 

in software creation.  

 

Hence, the fundamental importance of abstractions as information hiding is that by 

abstracting, software developers are able to conceptualize a phenomenon in a simplified way 

and ignore, avoid, or may simply be unaware of a number of ‘messy’ details. In software 

creation these ‘messy’ details may include the concrete working of a specific software module 

or application, the operating system or the computer hardware. The use of abstractions is 

therefore the core means by which software developers decompose a given system 

specification into modules that can be implemented, analyzed and verified independent of 

each other (Kiczales 1996, Shapiro 1997, Booch 2001, Jones 2003).2 Such modularity helps 

developers to cognitively understand the system, enables different groups of developers to 

work on different modules and opens up of for the reuse of existing modules (Booch 1986, 

Prieto-Díaz 1990, Shapiro 1997). 

 

When abstractions are implemented in software they include both the presentation of a 

simplistic view (often denoted interface) of what functionality a software module provides 
                                                 
2 While developers strive for complete independence it is difficult to achieve in practice. The degree of 
independence is inversely proportional to the information needed about the inner workings of the module in 
order for to be able to use it properly. The information needed in each case is dependent on what abstractions are 
used as well as the abstraction mechanisms. For example, the abstraction mechanisms provided by object-
oriented programming languages provide more powerful means for ensuring independence as compared to older 
types of languages. 
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and the details of how that functionality is implemented. The user of an implemented 

abstraction can be the end-user of the software system, the software developer himself at a 

later stage, or other software developers (McClellan 1998, McKelvey 1998). In this way, 

abstractions is a way to create a division of labour over time.  

 

The programming code or modules may be related in a hierarchical manner leading to a 

multiple levels of abstraction. At a given level of abstraction the intention is that the 

developer need only to be concerned with what functionality is provided by the lower levels, 

not how this functionality is implemented. At the same time, the programmer can abstract 

from other aspects of code on the same level, meaning that programmers abstract (hide 

information) in the horizontal as well as the vertical domain in relation to the hardware. 

Vertical abstraction means that a programmer working at a given level of abstraction needs 

only to write a few statements to invoke a functionality that is implemented in a large number 

of statements at the lower levels. In fact, as the level of abstraction is increased the ratio 

between the statements written by the programmer and the statements (instructions) 

performed at the machine level gets lower. In this way, if the programmer can maintain the 

same speed in terms of the number of written commands per unit of time, his productivity is 

greatly enhanced by working on a higher level of abstraction.  

 

In a similar way, when implementing the details at the lower levels closer to the hardware, 

programmers need only to be concerned with how a certain functionality is implemented and 

may largely ignore the more application oriented issues, such as to what purpose the 

functionality is used. They are therefore concerned with developing code that can be used in a 

large number of different application contexts. 

 

The use of abstraction in software creation is not limited to invoking lower level functionality. 

Abstractions are also used to delineate modules at the same level of abstraction from the 

perspective of the hardware. Using abstractions is thus a general way of dealing with 

complexity by allowing selective attention rather than mastering the ‘whole’ (Simon 1962, 

Dijkstra 1972, Parnas 1972). The principle of abstraction can be seen as a meta- paradigm 

underpinning all software creation paradigms, such as different software languages, software 

architectures or modularity. Indeed, the distinction between different programming language, 

software architecture or software design paradigms are related to different ideas of how 

software should be structured (Appleby and Vandekopple 1997), i.e. what mechanisms are 
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provided that enable software developer to specify, implement, and use abstractions. Notably, 

these mechanisms have changed greatly over the years. Therefore, in the next three sections 

we will analyze how complementary changes in theoretical knowledge of problems, 

instrumentation and computational capacity have changed what abstraction mechanisms are 

available to software developers. After that we will analyse what effects these changes have 

had on the type of abstractions developers are able to create and use. 

 

3.2 Theoretical understanding of problems related to abstraction 
A central problem related to the development of mechanisms and tools to aid programmers to 

create useful abstractions is the creation and verification of representation in software.3 This is 

the problem of specifying an internal representation of programming code that is appropriate 

for the purpose and expected functionality of the software being created, and verifying that 

the implemented representation is correct. For example, how should a given specification be 

translated into programming code and how can it be verified that the resulting software works 

as intended? 

 

This problem is non-trivial for three reasons. First, the users of the software who specify what 

the software should do are seldom able to express their specification in a formal language that 

is consistent with the programming language being used to create the code (Broadfoot and 

Broadfoot 2003). Second, it has been mathematically proved that it is impossible to create a 

general computational routine (algorithm) that can verify if an algorithm completes 

(successfully terminates) its computation for all possible inputs (Gödel 1931, Turing 1936).4 

Third, testing all possible states that a program can enter is infeasible even for relatively 

simple programs (Jones 2003).5 Thus, it is not possible to create general methods which 

provide a complete validation of representations in software. Instead methods have to be 

adapted specifically to each case or a set of related cases. This means that the balance between 

                                                 
3 There are other problems central to computer science and software engineering that are indirectly related. 
These problems include computation, which is the problem of determining the computational feasibility and 
creating and analysing computational routines (algorithms). Another problem relates project management, which 
are related to the managing of software development projects involving a group of people. Important advances 
have been made within these fields which have helped to raise the level of abstraction, for example by 
standarizing behaviour. However, these issues are outside the scope of this paper.  
4 This is commonly referred to as the undecidability of the halting problem and was first proved by Turing in 
1936. The issues raised by the halting problem are similar to those raised by Gödel’s incompleteness theorems, 
which states that it is impossible to create a complete and consistent axiomatization of all statements about 
natural numbers (Gödel 1931). 
5 A program with n two-way decision points has 2n possible paths or states.  
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power and generality has been an ongoing concern in the software creation community from 

the very beginning (Brooks 1995, Shapiro 1997). The quest has therefore been to develop 

tractable ways to deal with the problem rather than being able to provide a formal method for 

dealing with all possible contingencies (Jones 2003). 

 

This non-triviality has led to an ongoing experimentation to support abstraction with the use 

of abstraction mechanisms (Embley et al 1995, Monroe et al 1997, Gil and Lorenz 1998).6 

These mechanisms are techniques used to create both sides of the abstraction interface; that is 

the information needed to use the software module that implements the abstraction as well as 

the means to provide and verify the functionality of the abstraction for some new purpose or 

context. This means that the abstraction mechanisms are the core conceptualisations that 

allow developers to use abstractions in their work (Kiczales 1996, Shapiro 1997, Jones 2003).  

 

To illustrate how theoretical knowledge of abstractions and abstraction mechanisms has 

evolved, we discuss four major events in the development of programming languages 

(Guarino 1978). The first step resulted in the development of programming language 

mechanisms in the 1950s and the early 60s which helped to abstract away the specific 

workings of hardware. Languages such as FORTRAN included abstraction mechanisms such 

as naming, which is the ability to use mnemonic names for memory addresses; primitive 

control abstractions, which include WHILE DO loops; basic data abstractions, which include 

integer and real variables; and basic abstractions for creating modules, such as subroutines. 

The importance of these abstraction mechanisms was that they helped programmers to 

automate many simple, but time consuming and error prone, ‘book keeping’ tasks of 

programming, many of which related to hardware specific problems. 

 

The second step was the recognition of the importance of user defined abstractions for 

structured decomposition of specification. By user, we emphasize that the user is a 

programmer, indicating there is a division of labour within the task of programming. The 

advantage with the new type of abstraction mechanisms was that other software developers 

but the ones that created the software language could modify the abstractions. This meant that 

                                                 
6 The concept of abstraction mechanisms varies in its scope in the literature. How the concept is used in this 
paper is in line with Gil and Lorenz (1998). Their definition has a relatively narrow scope focusing on the 
technique of abstracting and does not include the tools/artifacts implementing these techniques nor the 
underlying theoretical knowledge. Common examples of abstraction mechnisms are the techniques of 
inheritance and encapsulation used in object-oriented programming. 
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the division of labour was not just limited to having a program language developer and an 

application developer but that there is the possibility of an arbitrary division of labour based 

on user defined abstractions. Structured languages such as ALGOL 68, SIMULA 67 and 

PASCAL provided mechanisms for user defined data object types and in the early 70s 

languages were introduced to enforce the correct usage of abstract data types. The 

introduction of abstraction mechanisms which supported used defined abstractions greatly 

increased the ability of programmers for expressing abstractions which were more closely 

oriented to the problem that the program was to deal with. In this way, the nature of the actual 

hardware could for many applications be ignored as a new structure of abstractions above the 

hardware could be supported. However, at the same time it became more difficult to 

automatically verify their correctness. Techniques for checking the use of abstract data types 

helped to reduce the problem, but did not eliminate it.  

 

The third step was the recognition of the importance of abstractions that could mirror real life 

objects and processes (Friedman 1989). This understanding lead to the development of object 

oriented languages such as Smalltalk in the 1980s and C++ and Java in the 1990s. In addition 

to the ability to mirror real life objects, object oriented languages provided more powerful 

abstraction mechanisms to ensure and enforce the independence of different modules 

(objects), such as information hiding, inheritance and isomorphism. Thus, objected oriented 

languages provided both better assistance for raise the level of abstraction closer to the 

specification provided by the user and more powerful abstraction mechanisms at given levels 

of generality.  

 

The forth step is the recent dramatically increased use of scripting languages. These have been 

around since the 1960s but have been much slower compared to other types of programming 

languages. Thus, they have not been generally useful until recently. These languages have 

much less emphasis on strong typing and consequently are much more flexible to use 

(Ousterhout 1998). Specifically, scripting languages are more useful for integrating existing 

components or code (‘gluing’) than traditional compiled languages. Therefore, their main 

usefulness comes in terms of reusing (and abstracting) code, written for example in some 

object-oriented programming language.  

 

While the theoretical understanding of the importance of abstraction for program design was 

established relatively early it has taken considerable time to develop and implement better 
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means for expressing and verifying abstractions. In part, the reason for this is the time it has 

taken to develop appropriate development tools. We now turn to the development of these 

instruments and how in turn it has influenced theoretical understanding of problems.  

  

3.3 Instruments and abstraction 
A number of different classes of development tools have been created to help the creation and 

use of abstractions and abstraction mechanisms. Prime examples include compilers that 

transform human written code into machine readable instructions. Thus, the compiler supports 

certain type of abstractions through the implementation of appropriate abstraction 

mechanisms.  

 

Most of the development tools (instruments) are software based, meaning the tools consists of 

software that is created specifically for the creation of software. We will discuss some 

important types of instruments.  

 

In order to express abstractions an editor is needed.7 The first editors were mechanical punch 

card machines where each card represented one line of program code.8 A code for a program 

consisted of a stack of cards which were read into the computer and each statement translated 

into machine instructions by an interpreter or a compiler. The interpreter or compiler checked 

if the syntax of the statements fit the grammar of the programming language. If there were 

errors these were printed on a printer.  

 

In the late sixties the use of console screens for computer output became increasingly popular. 

The use of consoles made the expression and verification of abstraction much easier and the 

time between the input of the program and generating an observable output also became much 

faster than before because of the ability to see the code and the software output on the screen 

and not just on a printer. The use of the console also enabled the creation of the debugger, a 

program for monitoring and influencing the state of a program while it is being executed. By 

using a debugger the developer is able to discover errors (‘bugs’) in the program which have 

to do with the logic of the program, including the implementation of its abstractions, in 

addition to the syntax errors captured by the interpreter/compiler.  

                                                 
7 The very first computers were programmed by more primitive methods but we don’t include those here. 
8 See Jones (2005) for an historical account of the use of punch cards. 
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Editors, compilers/interpreters and debuggers remain the main development tools for 

programmers, but their nature has changed dramatically.  First, there has been a change in the 

programming languages they support in line with the development described in Section 3.3. 

Not only have compilers supported more complex abstraction mechanisms, which enable 

abstractions that are closer to the conceptualization of the user’s problem rather than the 

operating of the computer, but there have also been increased opportunities for providing 

utilities to help developers create and manage these higher level abstractions. An example of 

such utilities are graphical diagramming tools enabling developers to visually create and 

maintain a design in a high level design language, such as the Unified Modelling Language 

(UML), which can automatically generate programming language statements based on these 

designs.  

 

Second and also related to the increased used of a graphical user interface, development tools 

have been created in the form of Integrated Development Environments (IDEs) which makes 

it easier to relate debugging information to the source code. Additional tools for managing a 

larger code base have also become a standard feature of an IDE, for example, object browsers 

and source control systems. The latter is extremely important for managing large software 

projects involving a large number of developers as it provides various means of version 

control including mechanisms to mark which part of the code is under revision and monitor 

interdependencies between different modules.  

 

In addition to changes in basic development tools the amount and functionality of existing 

code available to programmers has changed dramatically. Typically, this code provides a 

general-purpose functionality, usually at a lower level of abstraction, without imposing a 

particular design on the software that uses them. Examples of such code are various 

application programming interfaces (APIs). A case in point is the Windows API provided by 

Microsoft’s Windows operating system.  

 

Related to the popularity of object-oriented programming, existing code increasingly comes 

as “frameworks”. A framework dictates the architecture and the design of a software system 

where a software designer need only to be concerned with providing the functionality needed 

for a particular application. Frameworks allow programmers to work at a high level of 

abstraction as they are specific to a particular problem domain and assume that a single 
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architecture will work for all applications in this domain (Sparks et al 1996). For example, in 

the case of the standard Windows application the developer needs to extend the functionality 

of certain objects as dictated by the framework, e.g. specify how documents are created and 

saved but does not have to create the whole structure of a Windows application from scratch9. 

 

The implementation of complex high level abstraction mechanisms, integration of developing 

tools using graphical interfaces and the management of a large code base make imposing 

demands on processing power and data storage. While the use of existing code may speed up 

the development process it is likely to further increase the demands on computational capacity 

as it is unlikely to be optimally adapted to the problem at hand, both in terms of size and 

execution speed. Thus, the changes in instrumentation for software creation are very much 

dependent on increased computational capacity available to programmers. We now turn to 

changes in computational capacity. 

 

3.4 Computational capacity and abstractions 
 
In the early days of computing the constraints on the usability of computer systems were 

related to the cost and capacity of the computer hardware (Friedman 1989). These constraints 

were related to the processing power of the computer hardware, such as the number of 

instructions that could be performed per second, the size of the internal memory used to store 

programs and for intermediate results and external data storage. 

 

Improvements in computer technology moving from valves used in the first computers, 

through using transistors in the 50s, and to using integrated circuits in the 60s lead to 

remarkable improvements in computer speed as well as memory capacity. Between 1953 and 

1965 the average improvement in the performance of processing units and memory were 80% 

per year while the reductions in costs were 55% for a given performance level (Friedman 

1989). In 1965, one of the founders of Intel, Gordon E. Moore estimated that the number of 

components per integrated circuit would double every 12-18 months leading to dramatic 

decrease in cost per component at least to 1975 (Moore 1965). Moore based his prediction, 

later to be termed Moore’s law, on empirical observation in the early sixties but this 

                                                 
9 Frameworks share many of the characteristics of abstraction mechanisms. They specify an interface  in the 
form of objects that are to be extended in a certain as well as an implementation which is based on the extensions 
done by the developer. 
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development has been remarkably stable since. Hence, processing speed and memory capacity 

have increased exponentially for over 50 years. In order to understand the magnitudes 

involved the Intel 4004 processor had 2250 components on a single chip in 1971 whereas the 

Pentium 4 processor introduced in 2003 had 42 million components (Intel 2005). 

 

Increased computational capacity has made software developers less sensitive to various 

speed and storage penalties related to the use of certain abstraction mechanisms. A case in 

point is the use of automatic verification. One approach that is used industrially is assertions 

(Hoare 2003). For most types of software, the speed penalty has become relatively less 

important compared to other considerations in programming.  

 
The increase in computational capacity of individual chips has further been enhanced by 

increased parallelism (Bell and Gray 2002, Bader 2004). Parallelism has been implemented 

through vector supercomputers or through the clustering of scalar processor. In the former 

case the performance increase is related to the structuring of the computer hardware, whereas 

in the latter case it is highly dependent on the software used to distribute and synchronize 

work across different computers in the cluster (Bader 2004). This software is based on many 

years of research on parallel computing and the creation of abstractions that abstract away the 

details of parallelism for application developers. The creation of these abstractions are based 

on abstraction mechanisms that enable developers make a distinction between the 

specification of functionality and the implementation of the functionality through parallel 

processing.  

 

While improvements in computational capacity have been crucial for the development of 

instrumentation (development tools) that are able to implement more complex abstraction 

mechanisms, further increase in computational capacity through networked processors is 

dependent on increased theoretical understanding of parallel processing and how it can be 

represented in software. This theoretical understanding provides the foundation for the 

creation of abstraction mechanisms that developers are able to use to program at a level of 

abstraction that need not to be concerned with parallelism. These interdependencies between 

theoretical understanding of problems, instrumentation and computational capacity provide a 

good example of how the software community addresses the increasing and arbitrary 

complexity through raising the level of abstractions with the help of more powerful (and 

complex) abstraction mechanisms. 
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3.5 Changes in the creation and use of abstractions 
The changes in the abstraction mechanisms made possible by complementary advances in 

theoretical knowledge, instrumentation, and computational capacity have influenced what 

abstractions software developers are able to create and use. These changes have transformed 

the nature of software creation during the last five decades and expanded the scope of its 

application.  

 

In its early days software creation was focused on the scientific calculations as the first 

computer systems were created by researchers or military personnel interested in performing 

complex calculations with great accuracy (Friedman 1989, p. 70). The functionality of these 

programs was almost entirely governed by mathematical equations used to model physical 

laws. Thus, the created programming code was relatively short and user interaction with the 

program during program execution was minimal. The focus was on abstracting away the 

computer hardware to be able to concentrate on the computation itself. Most of these 

abstractions were provided by the programming language and used by developers. 

 

Today software systems are often used to manage very complex processes, such as work 

processes in a large multinational firms or air traffic. Consequently many software developers 

have created increasingly larger and more complex software with extensive user interaction 

(Friedman 1989). This has been made possible by the creation of user defined abstraction 

which have been increasingly able to mirror real-life processes. 

 

The enormously expanded use and applications of software demonstrates its generic nature 

and “arbitrary complexity” (Brooks 1995, p. 184).  Indeed, in principle a computer can 

compute any “function which would naturally be regarded as computable” (Turing 1936).10 

The large scope – infinite in principle - means that it can be very tempting for software 

developers to ‘overstretch’ beyond what is technologically, organisationally, and financially 

reasonable and feasible at any point in time (Dijkstra 1972). Specifically, the expansion 

outside the physical applications such as prediction of ballistic curves means that most 

software developers cannot and do not rely on deterministic procedures such as physical laws. 

Instead they have to rely on representations of (real life) problems that cannot (easily) be 

                                                 
10 In effect this means that a computer is a universal Turing machine. 
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expressed by mathematical models. This means that software problems in general are ill-

structured (Newell 1969, Simon 1972).  

 

These characteristics make software systems “arbitrarily complex” (Brooks 1995) in contrast 

to physical systems whose complexity is structured. The point of this statement is that the 

structure and coordination within different ‘pieces’ of software is set through human created 

models, often without being able to rely upon an (hopefully correct) ontology of the workings 

of nature in terms of physical laws and mathematical or numerical approximations of these 

laws. This means that for most applications or contexts there are no physical laws governing 

relationships and interactions between different parts of the software. Instead computers 

systems are an organization of elementary functional components creating a symbol system 

which holds a set of symbols and a number of simple processes that operate upon structures of 

symbols (Simon 1996, pp. 17-22). These symbol systems are characterised by semantic and 

ontological uncertainty because they are developed by humans and the usefulness of the work 

of one developer may depend on the understanding and actual implementation of the work of 

another developer, implying the outcome of work may be unknowable. This means that the 

relationship and interaction between different parts of software are constructed through social 

interaction. Therefore, software is subject to unforeseen tensions as it is being used. 

 

Not only is software arbitrarily complex in principle in its nature, but its complexity has also 

been increasing in line with the extended scope of software objectives. This increased 

complexity is reflected in the code that the hardware runs in terms of its number of lines of 

code as well as the fact that the number of professions involved in the creation of software 

have increased.  

 

The issue of how to deal with this increased complexity has been an ongoing challenge facing 

the software community at large (Shapiro 1997). Following a couple of seminal NATO 

conferences in 1968 and 1969 in Germany, the computing community at large considered 

software creation to be a huge problem (e.g. Naur and Randell, eds. 1969). In fact, the 

situation was deemed to be so bad that the concept ‘software crisis’ was coined, highlighting 

the widely diffused (but largely erroneous) perception that hardware costs were dropping 

while software was increasingly expensive. Large software projects in particular have been 

shown to consistently be over budget, error-prone (‘buggy’) or delayed. In this sense, 

software seemed to be very difficult or even impossible to evolve or maintain.  
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However, these aspects of software do not mean there have been no attempts to address them, 

nor does it mean there has been no progress. Instead there have been many advances over the 

years including increases in programmer productivity (Brooks 1995, Shapiro 1997, 

Ousterhout 1998, Hoare 2003). The development of mechanisms and tools to aid 

programmers to create useful abstractions and to help raise the level of abstraction has been 

central in addressing the issue of complexity and the “software crisis” (Appleby and 

Vandekopple 1997, Booch 2001). Specifically, programming at a higher level of abstraction 

improves the ability to focus on the application or problem domain, while ignoring all or parts 

of the detailed working of the lower levels. This is made possible by “galaxies of 

abstractions” which hold together “societies of collaborating objects” (Booch 2001). These 

galaxies are a network of user-defined representations of the components of a software 

application. Some of them may be more generically useful than others, e.g. components 

provided by object-oriented frameworks, but many of them are specific to the application 

being created. 

 

The existence of a network of components, however, creates the need, or opportunity, for new 

types of abstractions (e.g. Zimmer 1985). These abstractions ‘glue’ together different 

components. Such abstractions are made possible through scripting languages, which are 

abstraction mechanisms that are not designed for building data structures and algorithms from 

scratch, but to connect already existing components (Ousterhout 1998). Abstractions are 

therefore not only used to abstract away the hardware when performing calculation, but also 

to creating and re(using) an ever expanding universe of arbitrary abstraction galaxies where 

each abstraction being created represent a component in the final software.  
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4. Discussion and conclusion 

 

The purpose of the paper is to analyse how mechanisms for creating representations that allow 

for economizing cognition evolve in software creation and how that evolution influences the 

representations being created and used by software developers when they create new 

software. By doing so, the aim is to contribute to our understanding of how knowledge grows 

in the economy.  

 

In Section 3, we described how the software creation community has searched for new 

mechanisms to improve support for the abstractions developers can create and use in their 

work. This has led to a major expansion of the types of abstraction mechanisms that are 

available for developers and the abstractions that they support.  

 

The earliest abstraction mechanisms allowed for the creation of pre-defined abstraction types 

which primarily had the objective to omit details of running the software on a computer. This 

includes abstraction mechanisms that allowed programmers to ignore many messy details of 

programming, such as keeping track of where programs and data are stored in physical 

memory.  Essentially, these abstraction mechanisms automated many simple, but time 

consuming and error prone, ‘book keeping’ tasks of programming. 

 

More recently created abstraction mechanisms allow developers to create their own 

abstractions enabling them to specify themselves the separation of ‘what’ a particular 

software module does from ‘how’ that functionality is implemented. This had two important 

consequences for development work. First, it allowed developers much greater flexibility in 

structuring their code. Instead of the structure being heavily influenced by the structure of the 

computer hardware it was possible to create a structure on top of that which bore closer 

resemblence to the user problem being solved. Software code thus became structured more as 

a hierarchy where low level representations or abstractions of the hardware were connected to 

higher level representations or abstractions of the user problem. Second, it made it much 

easier for developers to reuse software modules made by others. As software structures 

became more multi-level some of the lower level structures had general applicability for 

different end-user application. The reuse of software modules has however never become 

trivial as the assumptions made by the developer creating the abstractions might not be 

completely shared by the developer using them. Alternatively, their objectives might also 
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differ so that code is reused for some purpose that it is not very well suited for. These types of 

problems may lead to abstraction mismatches at different levels which may be difficult to 

remedy and consequently lead to erroneous results or breakdown when the software is run. 

 

Over time, the consequence of the change in abstraction mechanisms, and the enormous 

expansion in the number of abstraction they can support, is that software code is increasingly 

composed of a large interrelated network structure of abstractions which have been created by 

a large number of developers whose work has mostly been coordinated only through 

abstraction interfaces. This network structure forms what Booch (2001) refers to as “galaxies 

of abstractions” which connect representations of individual hardware components to 

representations of the user problem being solved, but normally through a very large number of 

intermediary representations. Many of these representations are shared by other software 

applications.  

 

So what explains the evolution of abstraction mechanisms that has enabled the rise of the 

abstraction network structure? Abstraction mechanisms that are used by software developers 

are technologies of software creation. This means that the evolution of abstraction 

mechanisms is a change in the technology of technical change (Dosi 1988, Arora and 

Gambardella 1994).  As discussed in Section 2 and illustrated in Section 3, the evolution of 

abstraction mechanisms is underpinned by complementary changes in three domains, 

increased theoretical understanding, improvements in instrumentation and increased 

computational capacity. To make the use of complex abstraction mechanisms economically 

and technically feasible to developers required the development of tools that automated their 

implementation. These tools, in turn, required dramatic increase in computational power.  

 

Advances in the three domains are complementary because of the relationship between the 

generality and the power of problem-solving methods (Newell 1969). As discussed in Section 

2, the generality of a method is determined by the range of problems that the method can 

solve. The power of a method is determined by the ability of the method to deliver a solution 

of acceptable quality within some specified resource and time constraints. Newell argues that 

there is an inverse relationship between the generality of a method and its power. Thus, for a 

given degree of generality, there is an upper bound on the power of a method and this upper 

bound decreases with increased generality. This means that in one extreme we have powerful 
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problem-solving methods of low generality, and at the other extreme we have general 

problem-solving methods of low power.  

 

Changes in theoretical knowledge and instrumentation do not have a direct relationship to 

generality or power, as advances in them can improve both dimensions. However, over time 

there has been a move towards a higher generality in both instrumentation and methods and 

procedures. Many of these new tools and methods have much lower power than earlier ones. 

However, improvements in computational capacity will increase power of existing problem-

solving methods and allow new and more general methods with lower power to be 

technologically and economically feasible. Consequently, in software creation, methods and 

tools of higher generality will become more powerful with greater computational capacity.  

 

Despite this, in software creation, the power of problem-solving that are used by developers is 

not very high. As described in section three both high power/low generality and low 

power/high generality methods are used within software creation. The difference between 

these two are nicely captured in the different views of the leading authorities on abstraction in 

software creation. Dijkstra and others promoted the creation and use of powerful methods 

which would give developers (total) control of the behaviour of the software (Shapiro 1997). 

This means that the behaviour of the software could be verified and demonstrated to be 

correct before use. Parnas (1972) on the other hand was concerned with the ability to create 

flexible representations through information hiding without the need to verify the correctness 

of software before use (Shapiro 1997). In practice, the latter approach has dominated as the 

former has proven to be extremely difficult. In the word of Brooks “I dismissed Parnas’ 

concept as a “recipe for disaster”… Parnas was right, and I was wrong” (1995, p. 272). 

However, in specific instances where verification of software design is of utmost importance, 

such as in the space sector, the former perspective is extensively used.  

 

Our results support the argument made by Arora and Gambardella (1994) that changes in the 

technology of technical change is driven by complementary advances in  theoretical 

knowledge, instrumentation and computational capacity. However, the characteristics of the 

knowledge development resulting from these changes differ greatly. Arora and Gambardella 

(1994) argued that knowledge is increasingly being cast in more universal categories which 

enable developers to bring together hitherto non-connected domains or experiments. In that 

way developers can apply the same general knowledge to a range of different problems by 
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selectively combining it with specific, or local, knowledge. However, in our case we find that 

knowledge is increasingly being cast in a network structure of abstractions and is being drawn 

upon by developers through the use of an expanding set of abstraction mechanisms. As the 

network structure expands and becomes more compact (fine-grained) the ratio between 

developers’ knowledge and the total knowledge they are able to draw upon in their 

development work becomes lower. They are thus able to do more by knowing less. 

 

What does this difference imply? These two types of knowledge development mentioned 

above were in the introduction characterized as, on one hand, stressing how humans improve 

their knowledge of the world through more powerful problem-solving methods, and on the 

other hand, stressing that the organization of knowledge allows individuals to economize on 

cognition. These two ways of how knowledge develops can be linked to different views about 

the nature of abstraction. When abstractions are viewed as general concepts formed by 

extracting common features from specific instances, the creation and use of such abstractions 

means that knowledge is cast in more universal categories. However, when abstractions are 

viewed as the suppression of details, the creation and use of such abstractions means that 

individuals are able to economize on cognition. The former is a special case of the latter, as 

the extraction of common features always involves the suppression of details. 

 

The outcome of this reasoning is that Arora and Gambardella’s (1994) characterization of 

knowledge development is only partial. Their characterisation of knowledge growth is 

equivalent to saying that knowledge is both becoming more general and powerful. The 

implications in terms of an increasing division of innovative labour follows directly from such 

a characterisation. However, a more complete picture is to look at the network of abstractions 

that are supported by abstraction mechanisms which are both of the high generality/low power 

type and the low generality/high power type. The structured networks of abstractions provide 

a different characterization for how developers and firms specialize. The abstraction network 

structures can be understood as a cognitive foundation for the division of labour at a given 

point in time. This may then allow for division of labour within as well as between firms.  

 

The other implication of the network structure of abstraction is that it is a cognitive 

foundation for knowledge reuse among developers. This is a source for markets for 

technology (Arora et al. 2001) but it is a source of specialization beyond markets. We suggest 
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that this network structure of abstractions provides the technological governance structure of 

open source and of open innovation activities in software development.  

 

Another issue involves the experimental nature of software development. Here, the role of 

failure and problems by economizing cognition explains why the issue of integration and 

validation of correctness is so important for firms. There are truths to the characterization of 

knowledge being typed into more universal categories. However, Section 2 and 3 illustrated 

how the attempts to improve knowledge, to make it more general time and again collaps and 

fails so that purposeful abstractions that hide inessential details ‘deteriorate’ into ‘mere’ 

information hiding or suppression of detail. We argue that this is a fundamental cause of the 

experimental nature of software creation and why so many software projects fall behind 

schedule or fail altogether. Such shifts occur when developer overstretch beyond what the 

purposeful suppression of essential details can account for. In this way, many improvements 

in knowledge are illusory and these illusions break down as developers attempt to break new 

grounds.  

 

At least in the case of software creation, knowledge development by improving knowledge 

seems to be much rarer than the one which is based upon economizing on cognition, which is 

ubiquitous. Certainly, the attempts of software scientists and engineers is to make knowledge 

better, but mostly these improvements are constrained within limited domains of applications 

and these limitations are only understood to some extent at any point in time. Thus, the 

development described by Arora and Gambardella (1994) may influence the division of 

innovative labour under certain assumptions of appropriability, but does not provide a 

complete understanding of it. This is also confirmed by the modularity literature where it is 

argued that modular product architectures allows for a division of innovative labour (c.f. 

Sanchez and Mahoney 1996). The approach taken in this paper to focus on abstraction and 

abstraction mechanisms is a way to reconcile these different bodies of literature. The former is 

based on a special case of abstraction while the latter is the more general one.  

 

Additionally, the focus on abstraction mechanisms provide a dynamic approach that is 

missing in the modularity literature (Brusoni and Prencipe 2001, Ulrich 1995).11 That is, 

                                                 
11 The use of abstraction mechanisms is not only confined to software development but involves modularity at 
large as Ulrich (1995, p. 420) notes: “There have been several attempts in the design theory community to create 
formal languages for describing function..., and there have been modest successes in narrow domains of 
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changes in abstraction mechanisms have led to changes in the abstractions being used and, 

consequently the entire architecture of software code. Recently, in software creation, there are 

new attempts to modularize software that are based upon new types of abstraction 

mechanisms that take into account cross-cutting concerns that previous - supposedly modular 

approaches such as object oriented programming - has been unable to deal with. We suggest 

that analyses of such dynamic processes using the abstraction-based approach presented in 

this paper is an interesting venue for further research.  

 

 

 

 

 

 

 

                                                                                                                                                         
application such as elector- and fluid-mechanical systems and digital circuits... There have also been efforts to 
create informal functional languages to facilitate the practice of design...”. 
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